a2 United States Patent

Heller, Jr.

US009430153B2

US 9,430,153 B2
Aug. 30, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

GARBAGE COLLECTION AND OTHER
MANAGEMENT OF MEMORY HEAPS

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventor: Thomas J. Heller, Jr., Rhinebeck, NY
(US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 28 days.

Appl. No.: 14/521,006

Filed: Oct. 22, 2014

Prior Publication Data

US 2016/0117114 Al Apr. 28, 2016

Int. CL.

GO6F 12/02 (2006.01)

GO6F 3/06 (2006.01)

GO6F 9/455 (2006.01)

U.S. CL

CPC GO6F 3/0608 (2013.01); GOGF 3/0652

(2013.01); GOGF 3/0673 (2013.01); GOGF
9/45558 (2013.01); GO6F 2009/45583
(2013.01)

Field of Classification Search

CPC GOGF 12/0269; GOG6F 12/0253; GOGF
12/0261
USPC 711/170, E12.006, E12.008; 707/813,
707/814

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,480,862 B1* 11/2002 Gallcccoueeeeee. GOG6F 12/023
711/E12.006

6,594,678 B1* 7/2003 Stoutamire GOGF 12/0253
711/E12.009

6,804,765 B2 10/2004 Kolodner et al.

6,865,657 B1* 3/2005 Traversat GOGF 12/0276
707/999.202

7,010,555 B2 3/2006 Blandy et al.

7,111,294 B2 9/2006 Steensgaard

7,480,782 B2 1/2009 Garthwaite

7,584,232 B2* 9/2009 Guocoeveneneee. GOGF 12/0269
707/999.206

7,788,300 B2* 82010 Kuckccoeeee. GOGF 12/0253

707/813
7,962,707 B2* 6/2011 Kaakani GOGF 12/0269
707/813
8,255,436 B2 8/2012 Garst, Jr. et al.
2010/0031270 Al 2/2010 Wu et al.
(Continued)

OTHER PUBLICATIONS

“z/ Architecture—Principles of Operation,” Publication No. SA22-
7832-09, 10" Edition, Sep. 2012, 1568 pages.

(Continued)

Primary Examiner — Pierre-Michel Bataille

(74) Attorney, Agent, or Firm — Margaret McNamara,
Esq.; Blanche E. Schiller, Esq.; Heslin Rothenberg Farley &
Mesiti P.C.

(57) ABSTRACT

A memory heap management facility is provided that is able
to perform various management tasks, including, but not
limited to, garbage collection, compaction, and/or re-order-
ing of objects within a heap. One or more of these manage-
ment tasks improve system performance by limiting move-
ment of pages in and out of virtual memory. The garbage
collection technique selectively performs garbage collection
such that certain objects, such as old but live, infrequently
referenced objects, are not garbage collected each time
garbage collection is performed.

18 Claims, 15 Drawing Sheets

300
332
HEAP SECTIONO | HEAP SECTION 1 | HEAP SECTION 2 HEAP SECTION 31
306

VETADATA| PAGE | PAGE | PAGE | PAGE | PAGE | PAGE | PAGE | PAGE
GROUP 0 | GROUP 1| GROUP 2 | GROUP 3 | GROUP 4 | GROUP 5 | GROUP 6 | GROUP 7

VERY FREQUENTLY REF

304 RARELY RARELY AND/OR NEWLY
REF) - CREATED OR SMALL

OBJECTS OBJECTS

US 9,430,153 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2012/0310998 Al 12/2012 Burka et al.
2012/0331018 Al 12/2012 Khanna

OTHER PUBLICATIONS

Wagner, et al., “Compartmental Memory Management in a Modern
Web Browser,” ACM SIGPLAN notices, 46 (11), Jun. 2011, 10

pages.

Bailey, Chris, “Java Garbage Collection”, IBM Software Group,
http://www-01.ibm.com/support/docview.wss?uid=swg27013824
&aid=1; (No Date Information Available), 55 pages.

Heller, Thomas I., Jr., “Garbage Collection and Other Management
of Memory Heaps,” U.S. Appl. No. 14/846,887, filed Sep. 7, 2015,
pp. 1-54.

List of IBM Patents of Patent Applications Treated As Related, Mar.
18, 2016, pp. 1-2.

* cited by examiner

U.S. Patent Aug. 30, 2016 Sheet 1 of 15 US 9,430,153 B2
100
124 JAVAVIRTUAL MACHINE | 120
MEMORY BYTECODE
MANAGER —}- 126
. ! Lﬁ% /?%EN VERIFIER
| | [INTERPRETERIIT
RE.ORDERNG) | L__COMPILER [} 128
104
JAVAAPIs |~122 [
MEMORY
112~ F1 10
» | CONTROL
uTILITY | | CACHE

/0

106

I

| HYPERVISOR |~-114

!

EXTERNAL I/0 DEVICES
AND DATA

—~—108

Fl

G. 1

U.S. Patent Aug. 30, 2016 Sheet 2 of 15 US 9,430,153 B2

202
NATIVE CPU 200
210-L—] REGISTERS 004 206
| [JAVAVIRTUAL
220~ MACHINE(S) MEMORY
] — | EM&%‘[‘,TEOR INPUT / OUTPUT
212J 238
FIG. 2A
2112 MEMORY
S j 2&230
| [INSTRUCTION | ! GUEST
252—1 ™ FETCHNG |el—— 2 o Tns
: ROUTINE :
256
| |)
| " INSTRUCTION | !
254J/—{\ TRANSLATION —f—' |NSTNRPJC|)\'/I'IIEONS
| |__ROUTINE |
| Y |
| |
EMULATION
260——+~ CONTROL | |
| |_ROUTINE |
. -

US 9,430,153 B2

Sheet 3 of 15

Aug. 30, 2016

U.S. Patent

VE 9Old
S103rg0 $103rg0
TIVAS HO Q3LYIHD mhwmm__mmo =N
ATMIN HO/ANY ATINVN Al3uvy ¥0€
434 ALLNINOTA AYIA §
£dNO¥O | 9.dNOYD | §dNOYD | ¥ dNOYD | €dNOXD | 2 dNOXO [1 dNOYD [0dN0¥D [\ i3
JOVd | 39Yd | 39Vd | 39vd | 39vd | 39vd | 39vd | 39vd
90€
1€ NOILO3S dv3H ZNOILO3S dvaH | | NOILO3S dvaH | 0NOILO3S dvaH
20€
00€

US 9,430,153 B2

Sheet 4 of 15

Aug. 30, 2016

U.S. Patent

HOLVOIANI 434 °
JuN0DIY *
N 103rg0

dg 9Old
9GE€ qOGE 121> ¢Ge 0S€
PR, m :
HOLVOIANI 434 ¢ | YOLVOIONI 434 * ZNOILO3S dVY3H
JUNOLOY © unoIayY ¢ | (shunonsjepdnasey | awilsiepdnjey d04 S100Y
z103re0 | (1 193rd0 30157
\
egGe

AN

¥0g

US 9,430,153 B2

Sheet 5 of 15

Aug. 30, 2016

U.S. Patent

¥ ©Old

0 NOILO3S dV3H 404 NOILO3TI0J 3DVAYVO
0Ly ™1 3LVILINI A18ISSOd -LSIT7.100d OL LD3rd0 aay AVA -
9 dNOYO 39Vd | NOILO3S dV3H OL IONVHO

s |

¢ dNOYD 39Vd NI IWOOY 40 1NO
80v

ON

1 dNOYD JOVd 0 NOILOIS dVaH NI
90% ™ 193rd0 AYOWIW LX3N ALYIOTIV

0¥] £ dNOY9 39Yd 0 NOILO3S dV¥3H OL IONVHO

@Q

¢9 dNOYO 3OVd NI WOOY 40 LNO
AV %

9 dNOYD JOVd 0 NOILO3S dVaH NI
00¥ ™ 193rd0 AMOWIIW LXAN ILYIOTIV

US 9,430,153 B2

Sheet 6 of 15

Aug. 30, 2016

U.S. Patent

G 'Old

0LG ™

318V 1IVAY 3AVIA SI 30VdS HONON3 TILNN NOIL33S dV3H HOVA NI
SdNOY9O F9Vd H3HLO FHON HO INO 40 NOILOFTIOD 3OVAVO LAVIS

¢30VdS JHOW d33aN
8089

¢ SNOILO3S dv3H
11V 40 SdNOYHO 39vd
d3.L9313S8 4310371700 FOVaHVO
908 A1LN3OIN

yog—~ SdNOYd 39¥d 44L0313S
NO NOILO3TI00 39VEHVO

¢ SdNOYUO 39vd 03103738 NI
30VdS HONONT

c0S

00S ™1 NOILO3S dV3H HOV3 40 ¥03HD J1a0IH3d

}

S3A

US 9,430,153 B2

Sheet 7 of 15

Aug. 30, 2016

U.S. Patent

9 'Old

g

HOLYDIANI FONFHI4TFY

13S3Y :NOILOV ON SAILOV

ANV 3AINV SI 1O3rdo

¢

¥19

¢l9

SS34AAV N3dO H3IMO1 0L LOVdNOD
‘JAILOV LON 1ng 3AITV SI LO3rg0

(¥ ¥O € dNO¥D F9OVd)
NOILD3S dV3H SIHL NI _~019

6138
HOL1VIIANI

JONFHT4FH

123rdo

1S173344 O1 NOILYOOT AHOWAN » Y
0L9—~—] NYNLIY ANV LON L33rd0

$133rg0 LSV

dNOY9 39vd / NOILD3S
2091 dv3H NI 193rd0 ANINYX3

3dSYHd 3137dWOD Ol YLVAV13IW NOILO3S dV3H
0091 LNIHHND NI SLOOY 3SN ‘3LDITI0D 39 OL SdNOXD
39Vd / SNOILI3S dV3H 40 ISVHd MdVIN 31N33X3

[AAY

)

@d3HSINI4

S3A

US 9,430,153 B2

Sheet 8 of 15

Aug. 30, 2016

U.S. Patent

»

HOLVIIANI 434 FHL 13539
‘NOILVD017 INTHHND
NI L23rga0 3AvVA1

SL1O0Y ONIGNTONI 'V.LVAYLIW LSnray
| =V1VAV13W NI HOLVOIAONI 434 13S
| = YLVAYLI NI JUnoQjey 13S ‘YIHY

d3ONIUIJTY ATIEVY, OLNI L23rdo JA0N

¢

1424

6138
HOLVOIANI 43

¢

] 7]

yAROE

vzs~] (@3Lvadn ATuvd “o°3) vauy
03103735 ¥3HLONY Y03HO

!

22| Av0 40 JWIL = suiLeiepdnyey 138 |

(L ANV 9 SdNOYD 39Vd “9'3) YIHY 0IONITHI43N
ATLNINDIYA NI 123rg0 LX3AN ANINYX

¢

&103rg0 1SV

0¢.

904 S3aA

¢(ATOHSTHHL

LINIHHND
0L

+ W] ajepdnjey < JNIL

002~ suwisiepdnisy NOILOIS dv3H 1X3N ININVX3

US 9,430,153 B2

Sheet 9 of 15

Aug. 30, 2016

U.S. Patent

8 Ol

18~ HOLVOIONI 434 1353 V1Vav13IW
NI unodiey INJW3HI3A

¢138

V.LVYAvLIW NI unoQey JAYIT
‘(1 ONV 0 SANO¥D 39Vd “9'3) Vauy

d3ONFHI43H A13dVd AY3A 4330 |'<

OLINI 123ra0 40 3AON 318I1SSOd

¢

0c8

¢§ "9'3 < unojey
8.8

-

HOLVOIANI 43

ON
¢l8

908 ™ V1vav1l3W NI 193rg0 LX3N ININVX3

V1VAV13N NI N0y INJWFHONI

¢

918

¢c8

1£4°)

)

(d3HSINI

!

Junonalepdnaley

$103rd0 18V

¢MO3HO LSV'T3ONIS

SNOILYY3ALI 0} "9'3 N33
11 SVH

ON
¢08

008 wnojajepdnasey ININYXI

| NOILOTS dV3IH L1X3IN ¥O3HO MO
SNOIATYd 40 401 O1 NdNL3d

¢

¥08

31vddn
¢

€¢8

US 9,430,153 B2

Sheet 10 of 15

Aug. 30, 2016

U.S. Patent

6 Old

J

NVIQ3W 3HL MOT39 unodisy SYH
¢l6 1 HOIHM dNO¥O I9Vd HIFNNN 7161 HOIHM dNOY9 IOVd ¥IFNNN
d3MOT NI L23rd0 HLIM dVMS

NVIQIW JHL 3A08Y JuUnodioy SYH
d3HOIH NI LO3rd0 HLIM dVMS

A4S

)

¢NVIAIN 3A08Y
S3A

016

06"~ L33rda0 LX3N 40 unodjey ININVX3

ONIM3IAHO3Y
Q3HSINI4

¢103r90 LSV
0Z6

¢VIOI4ANTE

38 H30HO3H T1IM
¢06

ON

006 ™

NYIQIN HLIM THVdNOD ANV SInoDisy 103rd0 NS Junodiay
103rd0 NvIQ3N ININY3L30 ANV V1VAYLIW ININVXE “"SdNOYD
3OVd INJOVFAv NI S133rg0 40 ONIM3AYOIY J1d0I3d

!

US 9,430,153 B2

Sheet 11 of 15

Aug. 30, 2016

U.S. Patent

0l Old

H3HOIH N3AF S139 INNOD
9L0L ™1 NIHM ¥3d33Q IAON ** ANV 4| 'dNO¥D
3OVd # ¥3HOIH O1 L33ra0 JAON

ANV 4| ‘dNO¥9
J9Vd # HIMO'

8L0OL ™ “o1193rg0

JAOW AT8ISSCOd

on

¢ATOHSIYHL < JuUnojey

S3A

¥101

Lok |

junodisy INFWIHONI

o

0LOL ™

0 OL Junodisy

JONVHO ANV HOLVOIAN| (e
E\ECEEENERE)] S3A

¢13S HOLVOIANI JONIFHFITY

8001

¢ATIMEVIN S

ON
Y001

€001~ NOILJ3S NI LO3rg0 LX3N ININVX3

!

Junodiay 1SNrav LNOA
‘JAITY LON S1103r90

000}~ MYVIA ANV 3OVYL NOILO3TI00 39VadYO 3LNJ3IX3I

¢

9001

US 9,430,153 B2

Sheet 12 of 15

Aug. 30, 2016

U.S. Patent

L1 "Old

~—

20k}
ANIGIN <O
JOVHOLS
I1avavay
¥3LNdINOD

J19013d00
NYHO0™d

/ #o:L

00L1
10NAaoyd
NVHO0Hd
431NdNOD

US 9,430,153 B2

Sheet 13 of 15

Aug. 30, 2016

U.S. Patent

0109

¢l 9ld
(S)321A3a
TYNY3LX3
N
109
¥31dvav YHOMLIN am_o%wm;z_ - AvV1dsId
/
0209 N N
2209 ¥209
[\
L2109 8109
__ _ 209
N-0t09 / 1INN
SHOYD ONISSID0Yd
W3LSAS N
JOVHOLS 9109
vy
¥€09)
AHOWAN 0€09
\
8¢09 YIANIS WALSAS ¥aLNdWOD | —¢+09

US 9,430,153 B2

Sheet 14 of 15

Aug. 30, 2016

U.S. Patent

/ﬁ_ﬂ,ﬁﬁr

g1G09

0109

0509 @mw

&

€l Ol

4__————-
\

\
i
\,

@@

\
\\

N¥S09 G609

US 9,430,153 B2

Sheet 15 of 15

Aug. 30, 2016

U.S. Patent

vl Ol

0909
/

aIBM0S
Jonag

QIEMJjoS uojeoliddy
oseqeleq yomieN BunpomipN abeinjg

0@ R

swajsAg
Jajuanapeg

® ghd @@s_m__

——\

swalsAs sionag
SALBGX JNJOANYIIY

= I [l

2IEM}J0S PUE 8JEMPIEH

OSIH ssweluiepy

2909
/
uonezifeny
sjuali suoyeoddy SYOMBN abelojs SIaAleg HEZIENHIA
[ENUIA [ENUIA [ENuIA [ENUIA [enJIA
=] (9 g L]
Juswiabeuep
Juswiyn4 pue Juswabeuepy [eLOd Jos Butoud pue Buiuoisinoid
Buiuueld vIs [SAD7 S3IAIDS Buusiay 80Inosay
/
SPEOPIOM

Buisseso.d Buissaoold
uonoesuel| SonA[euy eleq

Kanjeq JuswoBeuep
uoneanp3 oAy uonebineN
W00ISSE[D pue pue Buiddepy
[ENLIA Juswdojers(

US 9,430,153 B2

1
GARBAGE COLLECTION AND OTHER
MANAGEMENT OF MEMORY HEAPS

BACKGROUND

One or more aspects relate, in general, to virtual memory
of'a computing environment, and in particular, to managing
memory heaps of the virtual memory.

Virtual memory heaps are used by various object-oriented
managed runtime environments, including, but not limited
to, the Java Virtual Machine (JVM) runtime environment,
Microsoft Common Language Runtime (CLR) environment,
and the Smalltalk environment, as examples. The heap is the
primary memory resource for such environments.

Each heap provides memory for objects of the environ-
ment, and thus, may be referred to as an object heap. An
object heap includes many objects, each of which is, for
instance, an instance of a class, such as a JAVA class. A heap
is managed by managing the memory space of the heap,
including performing garbage collection to reclaim memory
space that is no longer used by the objects of the heap and
reallocating new objects.

SUMMARY

Shortcomings of the prior art are overcome and additional
advantages are provided through the provision of a computer
program product for facilitating management of memory
heaps. The computer program product includes a storage
medium readable by a processing circuit and storing instruc-
tions for execution by the processing circuit for performing
a method. The method includes, for instance, selecting a
heap section of a memory heap to be examined for garbage
collection, the heap section comprising a plurality of groups,
the plurality of groups defined such that groups include
objects of particular types, a particular type being defined
based on frequency of reference of the objects within a
group; selecting one or more groups of the plurality of
groups of the heap section to be examined for garbage
collection, the selecting being based on the particular type of
the one or more groups; determining whether garbage col-
lection is to be performed for the selected one or more
groups; and performing garbage collection on the selected
one or more groups based on the determining indicating
garbage collection is to be performed for the selected one or
more groups.

Methods and systems relating to one or more aspects are
also described and claimed herein. Further, services relating
to one or more aspects are also described and may be
claimed herein.

Additional features and advantages are realized through
the techniques described herein. Other embodiments and
aspects are described in detail herein and are considered a
part of the claimed aspects.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

One or more aspects are particularly pointed out and
distinctly claimed as examples in the claims at the conclu-
sion of the specification. The foregoing and objects, features,
and advantages of one or more aspects are apparent from the
following detailed description taken in conjunction with the
accompanying drawings in which:

FIG. 1 depicts one example of a computing environment
to incorporate and use one or more aspects of a memory
heap management facility;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2A depicts another example of a computing envi-
ronment to incorporate and use one or more aspects of a
memory heap management facility;

FIG. 2B depicts further details of a memory of the
computing environment of FIG. 2A;

FIG. 3A depicts one example of a memory heap and
details regarding one example of a heap section of the
memory heap;

FIG. 3B depicts one example of the metadata of FIG. 3A;

FIG. 4 depicts one embodiment of logic to allocate
memory objects in a memory heap;

FIG. 5 depicts one embodiment of logic to determine
when to perform garbage collection on a memory heap;

FIG. 6 depicts one embodiment of logic to perform
garbage collection;

FIG. 7 depicts one embodiment of logic to compact
memory objects within a memory heap;

FIG. 8 depicts one embodiment of further details of
compacting memory objects;

FIG. 9 depicts one embodiment of logic to re-order
objects in page groups of a memory heap;

FIG. 10 depicts another embodiment of logic to perform
garbage collection;

FIG. 11 depicts one embodiment of a computer program
product incorporating one or more aspects;

FIG. 12 depicts one embodiment of a cloud computing
node;

FIG. 13 depicts one embodiment of a cloud computing
environment; and

FIG. 14 depicts one example of abstraction model layers.

DETAILED DESCRIPTION

In one or more aspects, a memory heap management
facility is provided that is able to perform various manage-
ment tasks, including, but not limited to, garbage collection,
compaction, and/or re-ordering of objects within a heap.
One or more of these management tasks improve system
performance by limiting movement of pages in and out of
virtual memory.

In the examples described herein, the memory heaps are
Java memory heaps, however, aspects of the invention are
equally applicable to other types of heaps, such as those used
by CLR, Smalltalk and/or others.

One example of a computing environment to incorporate
and use one or more aspects of a memory heap management
facility is described with reference to FIG. 1. Referring to
FIG. 1, in one example, a computing environment 100 is
based on the z/Architecture, offered by International Busi-
ness Machines (IBM®) Corporation, Armonk, N.Y. The
z/Architecture is described in an IBM Publication entitled
“z/ Architecture—Principles of Operation,” Publication No.
SA22-7832-09, 107 Edition, September 2012, which is
hereby incorporated by reference herein in its entirety.

Z/ARCHITECTURE and IBM, as well as POWER,
POWERVM and POWERPC (referenced below) are regis-
tered trademarks of International Business Machines Cor-
poration, Armonk, N.Y. Other names used herein may be
registered trademarks, trademarks or product names of Inter-
national Business Machines Corporation or other compa-
nies.

As one example, computing environment 100 includes a
processor (e.g., a central processing unit—CPU) 102 com-
municatively coupled to memory 104 and an input/output
(I/0) subsystem 106. I/O subsystem 106 is further commu-
nicatively coupled to external I/O devices 108 that may

US 9,430,153 B2

3

include, for example, data input devices, sensors and/or
output devices, such as displays.

Memory 104 includes, for instance, one or more caches
110, at least one control utility 112, such as an operating
system (e.g., z/Linux, offered by International Business
Machines Corporation, Armonk, N.Y.), and a hypervisor 114
used to manage virtual memory. One example of such a
hypervisor is PowerVM, offered by International Business
Machines Corporation.

CPU 102 includes, for instance, one or more virtual
machines, such as one or more Java Virtual Machines
(JVMs) 120, and may include one or more Java application
programming interfaces (APIs) 122. Each virtual machine
120 includes, for instance, a memory manager 124 that
performs a number of management tasks, including garbage
collection, compaction, and/or object re-ordering (also
referred to as swapping herein), as examples. The virtual
machine further includes, in one embodiment, a bytecode
verifier 126 used to verify bytecode compiled from source
code, and an interpreter and/or Just-In-Time (JIT) compiler
128 used for compilation.

Another embodiment of a computing environment to
incorporate and use one or more aspects of a memory heap
management facility is described with reference to FIG. 2A.
In this example, a computing environment 200 includes, for
instance, a native central processing unit (CPU) 202, a
memory 204, and one or more input/output devices and/or
interfaces 206 coupled to one another via, for example, one
or more buses 208 and/or other connections. As examples,
computing environment 200 may include a PowerPC pro-
cessor or a Power Systems server offered by International
Business Machines Corporation, Armonk, N.Y.; an HP
Superdome with Intel Itanium II processors offered by
Hewlett Packard Co., Palo Alto, Calif.; and/or other
machines based on architectures offered by International
Business Machines Corporation, Hewlett Packard, Intel,
Oracle, or others.

Native central processing unit 202 includes one or more
native registers 210, such as one or more general purpose
registers and/or one or more special purpose registers used
during processing within the environment that include infor-
mation that represents the state of the environment at any
particular point in time. Further, native CPU may include,
for instance, one or more virtual machines 220, such as one
or more Java Virtual Machines, and may include one or more
Java APIs 222.

Moreover, native central processing unit 202 executes
instructions and code that are stored in memory 204. In one
particular example, the central processing unit executes
emulator code 212 stored in memory 204. This code enables
the computing environment configured in one architecture to
emulate one or more other architectures. For instance,
emulator code 212 allows machines based on architectures
other than the z/Architecture, such as PowerPC processors,
Power Systems servers, HP Superdome servers or others, to
emulate the z/Architecture and to execute software and
instructions developed based on the z/Architecture.

Further details relating to emulator code 212 are described
with reference to FIG. 2B. Guest instructions 250 stored in
memory 204 comprise software instructions (e.g., correlat-
ing to machine instructions) that were developed to be
executed in an architecture other than that of native CPU
202. For example, guest instructions 250 may have been
designed to execute on a z/Architecture processor 102, but
instead, are being emulated on native CPU 202, which may
be, for example, an Intel Itanium II processor. In one
example, emulator code 212 includes an instruction fetching

10

15

20

25

30

35

40

45

50

55

60

65

4

routine 252 to obtain one or more guest instructions 250
from memory 204, and to optionally provide local buffering
for the instructions obtained. It also includes an instruction
translation routine 254 to determine the type of guest
instruction that has been obtained and to translate the guest
instruction into one or more corresponding native instruc-
tions 256. This translation includes, for instance, identifying
the function to be performed by the guest instruction and
choosing the native instruction(s) to perform that function.

Further, emulator code 212 includes an emulation control
routine 260 to cause the native instructions to be executed.
Emulation control routine 260 may cause native CPU 202 to
execute a routine of native instructions that emulate one or
more previously obtained guest instructions and, at the
conclusion of such execution, return control to the instruc-
tion fetch routine to emulate the obtaining of the next guest
instruction or a group of guest instructions. In one or more
examples, the guest instructions may include instructions to
perform one or more aspects of the memory heap manage-
ment facility described herein, including, but not limited to,
providing Java virtual machines and/or performing garbage
collection, compaction and/or re-ordering of objects in a
heap. Execution of the native instructions 256 may include
loading data into a register from memory 204; storing data
back to memory from a register; or performing some type of
arithmetic or logic operation, as determined by the transla-
tion routine.

Each routine is, for instance, implemented in software,
which is stored in memory and executed by native central
processing unit 202. In other examples, one or more of the
routines or operations are implemented in firmware, hard-
ware, software or some combination thereof. The registers
of the emulated processor may be emulated using registers
210 of the native CPU or by using locations in memory 204.
In embodiments, guest instructions 250, native instructions
256 and emulator code 212 may reside in the same memory
or may be disbursed among different memory devices.

As used herein, firmware includes, e.g., the microcode,
millicode and/or macrocode of the processor. It includes, for
instance, the hardware-level instructions and/or data struc-
tures used in implementation of higher level machine code.
In one embodiment, it includes, for instance, proprietary
code that is typically delivered as microcode that includes
trusted software or microcode specific to the underlying
hardware and controls operating system access to the system
hardware.

The computing environments described above are only
examples of computing environments that can be used.
Other environments, including but not limited to, other types
of partitioned environments, non-partitioned environments,
and/or emulated environments, may be used; embodiments
are not limited to any one environment or to any particular
architecture.

Each environment utilizes virtual memory, which is man-
aged by the hypervisor and makes the physical memory of
the environment appear larger than it is. A portion of the
virtual memory is used for memory heaps that provide
memory for objects of an object-oriented managed runtime
environment.

In one example, each Java Virtual Machine (JVM) uses a
large memory heap to store active Java objects. Garbage
collection is run on each of these heaps in order to reclaim
memory space that is no longer being used (not alive
objects) and to reallocate the space to new objects. The
combination of a large number of JVMs used in systems,

US 9,430,153 B2

5

large heaps used by the JVMs, and previous garbage col-
lection techniques leads to a very large memory working set
at the hypervisor level.

It is desirable to provide a large virtual memory heap to
each JVM, since a large virtual memory heap helps ensure
that the JVM does not run out of memory and does not spend
a large amount of CPU time for garbage collection of Java
objects that are not alive. Certain operating systems, such as
z/Linux, can offer a large virtual memory space in order to
provide each JVM with a large memory heap. It is possible
for the sum of the desired virtual memory for all of the
operating system images to greatly exceed the physical
memory on the hardware system used.

The hypervisor provides the virtual memory system that
enables the over-commitment of physical memory. For
previous JVMs, however, this over-commitment of memory
does not work well at the hypervisor level. Current garbage
collection techniques used by previous JVMs end up touch-
ing too many pages in the heap too often. The result at the
hypervisor level is a constant movement of virtual memory
pages from disk to memory and back, along with reduced
system performance due to the associated CPU overhead.
With current garbage collection techniques, many virtual
memory pages are swapped from disk just so that the
garbage collector can mark very old objects that are not
otherwise being referenced often by the applications running
in the JVM. Thus, in accordance with an aspect of the
present invention, a technique is provided in which old (but
still live) infrequently referenced objects on the Java heap
are collected together and left mostly undisturbed and
untouched by garbage collection operations, so that the
virtual memory pages that they occupy can be swapped out
to disk for long periods of time.

In one embodiment, the garbage collection technique of
one or more aspects of the present invention is optimized for
multiple JVMs running in multiple operating system
instances, where the operating system images are them-
selves running in virtual servers. Real memory is saved at
the hypervisor level by enabling a very high level of memory
over-commitment. This is achieved, in one or more aspects,
without causing very high virtual memory paging rates, and
by optimizing the memory references of the virtual
machines that the hypervisor is supporting, especially the
garbage collection of those virtual machines.

One example of a memory heap, in accordance with one
or more aspects, is described with reference to FIG. 3A. In
this particular example, the heap is a Java memory heap,
which is a portion of a memory address space that includes
a range of addresses.

Referring to FIG. 3A, a memory heap 300 includes a
plurality of heap sections 302. In this example, there are 32
heap sections; however, in other examples, there may be
more or less heap sections. In one embodiment, additional
heap sections may be added dynamically as previous heap
sections become full or if certain subsections (e.g., page
groups, described below) of the heap sections become full.
The heap sections may be of the same size as one another,
or varying sizes. Each heap section 302 includes, for
instance, metadata 304 for that heap section, referred to as
local metadata, and one or more page groups 306 (also
referred to as groups), each of which includes one or more
memory objects. The objects in the page groups are grouped,
in one example, based on how frequently the objects are
used. In this example, there are eight page groups; however,
in other embodiments, there may be more or less than eight
page groups, and/or the grouping may be based on other
criteria. Further, the use of the term “page group” or “group”

20

30

35

40

45

55

6

is for convenience only to indicate that objects within a heap
section are placed together and/or moved within a heap
section based on a particular criteria, such as relative refer-
ence rates. There may not be an actual group configuration.
The term is used to indicate one or more objects of a selected
criteria, such as a particular reference rate.

In one embodiment, as a particular example, groups 6 and
7 of a heap section include frequently referenced and/or
newly created objects, while groups 0 and 1 include, for
instance, very rarely referenced objects, groups 3 and 4
include rarely referenced objects, and the other groups
include objects in between those characterizations on a
sliding scale. The characterizations of frequently referenced,
very rarely referenced and rarely referenced are based on
one or more defined threshold values and/or other criteria.
The characterizations are relative to one another in which
frequently referenced objects are referenced more often (e.g.
by some metric) than rarely referenced objects, and rarely
referenced objects are referenced more often (e.g., by some
metric) than very rarely referenced objects, etc. Although in
this example, certain groups have certain characteristics
(e.g., very rarely referenced, rarely referenced, frequently
referenced), other groups may have the same or similar
characteristics. For instance, page group 2 may have very
rarely referenced objects as in groups 0 and 1, or it can have
objects that are not as rarely referenced as those in groups 0
and 1, but more rarely referenced than those in groups 3 and
4. Many other variations exist. Further, the characteristics
may be different or they may be in a different order than
portrayed here. Many possibilities exist without departing
from the spirit of aspects of the invention.

Metadata 304 includes pieces of data used to assist in
navigating through the page groups, as described with
reference to FIG. 3B. In this example, the metadata is for
heap section 2; however, the information is similar for other
heap sections, and each heap section has its own local
metadata. In one example, metadata 304 includes a list of
roots 350 for the heap section, the list including one or more
roots for the heap section; a reference update time (RefUp-
dateTime) 352 indicating the last time the heap section was
examined for relocation of objects; a rare update count
(RareUpdateCount) 354 for each page group indicating a
count of iterations for the set of objects of the page group for
examination for, e.g., relocation; and certain object-specific
information 356 for each object. In one example, the object-
specific information includes, for instance, a reference count
(RefCount) 3564 and a reference (Ref) indicator (e.g., a bit)
3565 for each selected object of a page group. The object is,
for instance, a Java object stored in the heap section; the
reference count indicates, for instance, rare references and is
incremented when it is determined that there has been no
new references to the object during a last defined interval
(e.g., time interval); and the reference indicator indicates
whether the object has been referenced. In one example,
there is a reference count and reference indicator only for the
larger objects on the heap; that is, objects of a predefined
size or a predefined range of sizes; and smaller objects that
are on the heap do not include a reference count or reference
indicator.

In one embodiment, the metadata may be arranged to
facilitate finding data in the metadata (e.g., align objects on
a predefined boundary size (e.g., 100 bytes)), etc.

One embodiment of allocating objects in a particular page
group of a selected heap section of a memory heap is
described with reference to FIG. 4. This logic is performed
by, for instance, the memory manager of a virtual machine
(e.g., IVM) executing within a processor.

US 9,430,153 B2

7

Referring to FIG. 4, initially, the memory manager allo-
cates a memory object in a selected heap section and a
selected page group of the heap section, STEP 400. In this
particular example, it is shown that the memory object is
allocated in heap section 0 (the first section of the heap),
which is considered the active heap section, and page group
6, since page group 6 is, in this example, one of the groups
for newly created objects. However, this is only one
example. Any page group and/or heap section may be
selected in other embodiments.

In allocating the object, the address of the object may be
added to the root list in the metadata, if it is a parent object
or its parent is not in the root list.

The memory manager then determines whether there is
additional room in page group 6 for a next object to be
allocated, INQUIRY 402. If there is still room, then pro-
cessing continues with allocating additional memory objects
in this heap section and page group, STEP 400. However, if
there is no more room in the selected page group, e.g., in
page group 6, then another page group in, for instance, the
same heap section is selected, assuming there is such a page
group (if not, then another section is selected), STEP 404. In
this example, heap section 0 page group 7 is selected. Thus,
the next memory object is allocated in the newly selected
heap section/page group, STEP 406. Similarly, a determi-
nation is made as to whether page group 7 is out of room,
INQUIRY 408. If not, then objects continue to be allocated
in that heap section and page group, STEP 406. Otherwise,
another section and/or page group is selected, STEP 410. For
instance, if there are additional page groups in the heap
section configured for new objects, then another page group
in heap section 0 is selected. Otherwise, if there are no more
page groups in heap section 0 configured for new objects,
then a new heap section is selected, such as heap section 1.
For instance, page group 6 of heap section 1 is selected.
Heap section 1 becomes the new active heap section. When
the object is added to heap section 1, it is determined if the
parent object is also in heap section 1. If not, the address of
the new object is added to the local root list for heap section
1. Additionally, in one embodiment, garbage collection is
performed on heap section 0.

Although particular heaps and page groups are discussed
in this embodiment, these are only examples. Any heap
section and/or page group may be selected. However, in this
example, certain page groups are designated as including
newly referenced objects, and thus, are selected when allo-
cating new objects.

To reclaim space in the heap sections, garbage collection
is performed by the memory manager. One embodiment of
logic to determine whether garbage collection is to be
performed is described with reference to FIG. 5. Initially, the
memory manager periodically checks each heap section to
determine if there is enough room in one or more selected
page groups of the heap section, STEP 500. For instance,
each heap section is checked at predefined intervals, such as
every x seconds, where x is, e.g., 10. In other embodiments,
other intervals may be used, such as other values for x, or
based on other criteria, such as computing cycles, etc.

A determination is made as to whether there is enough
space in selected page groups of the heap section, such as the
most frequently referenced page groups of the heap section,
e.g., page groups 6 and 7, in this example, INQUIRY 502.
If there is enough space, then processing continues with
STEP 500. Otherwise, garbage collection is started for page
groups 6 and 7, which are the newest and most referenced
objects, in this example, STEP 504.

10

15

20

25

30

35

40

45

50

55

60

65

8

Subsequently, the memory manager determines whether
garbage collection has recently been performed on the
selected page groups (e.g., groups 6 and 7) in all of the heap
sections, INQUIRY 506. If not, then processing continues
with STEP 500 in which another heap section is examined.
Otherwise, the memory manager determines whether addi-
tional space is needed to accommodate more objects,
INQUIRY 508. This determination may be made any num-
ber of ways, including, but not limited to, comparing the
amount of free space to a defined value to determine whether
more space is needed. If further space is not needed at this
time, then processing continues with STEP 500. Otherwise,
garbage collection is started in one or more other groups in
each heap section until enough space is made available,
STEP 510.

In a further embodiment, at each check that determines
more space is needed, garbage collection is performed for all
of the page groups for all of the heap sections (or for
specifically chosen page groups and/or heap sections).

Further details associated with garbage collection are
described with reference to FIG. 6. Each heap section may
be examined separately using one thread, or in parallel using
multiple threads. The logic described below is for each heap
section to be garbage collected.

Referring to FIG. 6, initially, the memory manager
executes a mark phase for the heap sections/page groups to
be collected, STEP 600. In one example, this includes using
the roots of the heap sections stored in the metadata to
complete the phase. The mark phase includes examining the
objects in the selected page groups/heap sections to deter-
mine the live objects and marking those live objects with an
indicator. In one example, the mark phase does not include
a complete marking of the entire heap, but instead, uses a set
of roots that are specific to the current heap section being
marked. For example, for heap section 2, the local roots are
stored in metadata (304). A local root exists for each object
that was created in the heap section/page group whose
parent object is located in a different heap section/page
group. The mark phase begins with each of the local roots,
identifies and marks the root object and then identifies and
marks any child objects that exists whose location on the
heap falls within the same heap section/page group.

The memory manager examines an object in a selected
page group of a selected heap section to determine if that
object is marked as reachable i.e., was it marked in the mark
phase as being alive, STEP 602. If the object is not marked
as reachable, INQUIRY 608, then the object is not alive and
the memory is returned to the free list of memory, STEP 610.
Further, a determination is made as to whether the object
being examined is the last object of the heap section to be
examined, INQUIRY 620. If so, then garbage collection is
complete for this heap section, STEP 622. Otherwise, pro-
cessing continues to examine another object, STEP 602.

Returning to INQUIRY 608, if the object is marked as
reachable, then a further determination is made as to whether
the object’s reference indicator (e.g., a bit) 3565 (FIG. 3B)
is set, INQUIRY 612. If the reference indicator is set, then
the object is alive and active and no action is taken, except
for resetting the reference indicator, STEP 614. Processing
continues to INQUIRY 620.

However, returning to INQUIRY 612, if the object’s
reference indicator is not set, then the object is alive but not
active. Thus, in one embodiment, compaction is performed,
in which the object is moved to a lower open address in this
heap section, such as in page group 3 or 4, STEP 616.
Processing then continues to INQUIRY 620.

US 9,430,153 B2

9

In a further embodiment, a check is made prior to
INQUIRY 612 as to whether the object has a reference
indicator. If so, then processing continues to INQUIRY 612.
Otherwise, processing continues to INQUIRY 620.

In a further embodiment, the heap sections are examined
to find rarely referenced objects and possibly relocate those
objects to other page groups (i.e., compact the rarely refer-
enced objects in particular page groups). One embodiment
of this logic is described with reference to FIG. 7. In one
example, one or more independent threads are used to
examine the heap sections to find the rarely referenced
objects.

Referring to FIG. 7, initially, the memory manager selects
a heap section to be examined, STEP 700. In particular, a
reference update time (RefUpdateTime) 352 (FIG. 3B)
stored in the metadata for the heap section is examined. A
determination is made as to whether the current time (e.g.,
provided by the processor’s time-of-day (TOD) clock) is
greater than the reference update time plus a predefined
threshold (e.g., a programmable number of seconds (e.g., 2
seconds) or other time parameters), INQUIRY 704. If the
current time is not greater than the reference update time
plus the threshold, then processing continues with STEP
700. Otherwise, an object in a frequently referenced area of
the heap section (e.g., page groups 6 and 7) is examined,
STEP 706.

A determination is made as to whether the object has an
associated reference indicator (e.g., 3565 of FIG. 3B) in the
metadata for this object, INQUIRY 710. If it does not have
a reference indicator, then processing continues with
INQUIRY 720, described below. However, if the object has
a reference indicator, then a further determination is made as
to whether that reference indicator is set (e.g., set to one),
INQUIRY 712. If it is set, then the object is left in the current
location and the reference indicator is reset (e.g., set to zero),
STEP 714. Otherwise, the object is moved into, for instance,
a rarely referenced area (e.g., page group 3 or 4) of the heap
section; the reference count in the metadata (e.g., 356a of
FIG. 3B) is set to one; the reference indicator in the metadata
is set to one; and the metadata is adjusted including the roots
to accommodate the new object in the group, STEP 716.

Subsequent to STEP 714 or 716, processing continues
with INQUIRY 720. At INQUIRY 720, a determination is
made as to whether it is the last object of the frequently
referenced area to be examined. If it is not the last object,
then processing continues to STEP 706. Otherwise, if it is
the last object in the frequently referenced area to be
examined, then the RefUpdateTime is set equal to the time
of day, STEP 722. Further, another area is selected to be
examined, such as the rarely referenced area (e.g., page
groups 3 and 4), STEP 724. One embodiment of this logic
is described with reference to FIG. 8.

Referring to FIG. 8, the memory manager examines the
rare update count (RareUpdateCount) 354 (FIG. 3B) for a
selected page group of the rarely referenced area (e.g., group
3), STEP 800. A determination is made as to whether it has
been a predefined number of iterations (e.g., 10) since the
last check of this page group, INQUIRY 802. If not, then
processing continues with STEP 700 of FIG. 7 to check a
next heap section, STEP 804. Otherwise, a first object (or
other selected object) of the selected page group in the
metadata is examined, STEP 806. A determination is made
as to whether the reference indicator for the object is set,
INQUIRY 812. (In a further embodiment, a check is made
prior to INQUIRY 812 as whether the object has a reference
indicator. If so, then processing continues to INQUIRY 812.
Otherwise, processing continues to INQUIRY 822.) If the

25

30

40

45

50

55

10

reference indicator is set, then the reference count (356a) in
the metadata is decremented and the reference indicator
(3565) is reset (e.g., set to zero), STEP 814. Processing then
continues to INQUIRY 822.

At INQUIRY 822, a determination is made as to whether
it is the last object of that group. If it is, then the RareUp-
dateCount is updated, STEP 823, and processing is com-
plete, STEP 824. Otherwise, if it is not the last object,
INQUIRY 822, then processing continues to STEP 806.

Returning to INQUIRY 812, if the reference indicator is
not set, then the reference count (356a) in the metadata is
incremented, STEP 816. Further, a determination is made as
to whether the reference count is greater than a predeter-
mined number, such as, for instance, 5, INQUIRY 818. If it
is not, then processing continues with INQUIRY 822. Oth-
erwise, the object may be moved into, for instance, the deep
very rarely referenced area, such as page group 0 or 1, in this
example, since, according to the counter, it has not been
referenced in quite a while. Further, the reference count is
left in the metadata, STEP 820, and processing continues to
INQUIRY 822.

In yet a further embodiment, periodic reordering of
objects in page groups is performed, an example of which is
described with reference to FIG. 9. Initially, the memory
manager examines the metadata of all of the objects for each
of the page groups in a selected heap section to determine a
median object RefCount for the heap section, STEP 900.
Then, the memory manager scans the RefCounts of the
objects and compares them with the median. A determina-
tion is made as to whether a reorder will be beneficial, i.e.,
are there RefCounts that differ from the median, INQUIRY
902. If it is determined that reordering will not be beneficial,
then processing continues with STEP 900. However, if
reordering would be beneficial, then the RefCount of a
selected object of the metadata is examined, STEP 904. A
determination is made as to whether the RefCount of the
selected object is above the median, INQUIRY 910. If it is,
then the object may be swapped with an object in a lower
number page group which has a RefCount below the
median, INQUIRY 912, and processing continues with
INQUIRY 920. However, if the RefCount is not above the
median, then the object may be swapped with an object in
a higher number page group which has a RefCount above the
median, STEP 914, and processing continues with
INQUIRY 920. In further embodiments, the object may be
swapped regardless of the RefCount of the object with
which it is being swapped; and/or the swap may not occur
if there is no object in the lower/higher number page group
with a RefCount below/above the median, depending on the
circumstance.

At INQUIRY 920, a determination is made as to whether
this is the last object of the metadata to be examined. If it is
the last object, then reordering is complete, STEP 922.
Otherwise, processing continues with STEP 904.

Another embodiment of garbage collection is described
with reference to FIG. 10. In this embodiment, a garbage
collection trace and mark is executed, STEP 1000, as
described herein or in any other known manner. An object in
a selected heap section is examined to determine if it is
marked for collection, STEP 1002. A determination is made
as to whether the object is marked, as being reachable or
live, INQUIRY 1004. If it is not marked, then the object is
not alive, the RefCount is not adjusted, and its memory is
reclaimed, STEP 1006. However, if it is marked, then a
further determination is made as to whether its reference
indicator is set, INQUIRY 1008. If it is set, then the
reference indicator is reset (e.g., set to zero) and RefCount

US 9,430,153 B2

11

is set to zero, STEP 1010. However, if the reference indi-
cator is not set, then RefCount is incremented, STEP 1012.

Next, a determination is made as to whether the reference
count (RefCount) is greater than a predefined threshold,
INQUIRY 1014. If the reference count is greater than the
threshold, then the object may be moved to a page group of,
e.g., a lower number, into an unused object area, STEP 1018.
Otherwise, it may be moved in the other direction to a page
group with, e.g., a higher page group number, STEP 1016.

In one embodiment, subsequent to STEP 1010, 1016, or
1018, processing continues to STEP 1002. Further, in
another embodiment, prior to INQUIRY 1008, a determina-
tion is made as to whether the object has a reference
indicator. If it does, then processing continues with
INQUIRY 1008. Otherwise, processing continues to STEP
1002.

Described in detail herein is a memory management
facility, including garbage collection, compaction and/or
reordering, that is optimized for a high memory over-
commitment environment. In one or more aspects, a garbage
collection technique is provided in which a much larger
number of heap sections is created as compared to existing
generational garbage collection systems. Object reference
indictors (e.g., bits) are added to objects to create marks that
indicate how recently the objects were touched relative to
other objects.

Further, in one embodiment, a compaction phase follows
garbage collection that is focused on grouping objects by
their relative reference rate. For instance, least referenced
objects are compacted, e.g., to the left (i.e., to lower number
page groups), and most referenced objects are compacted
towards the right (i.e., to higher number page groups). Free
space is left in the middle and tracked with a set of pointers.

The garbage collection capability described herein does
not resort to a global mark and sweep as often; thus, a much
larger heap can be used in which frequently referenced
objects are grouped together and left untouched over many
partial garbage collections. One or more aspects allow JVMs
to have very large virtual memory heaps without causing
high virtual memory swapping rates at the hypervisor level.

One or more aspects provide a garbage collection tech-
nique and optimized JVM memory management settings.
The garbage collection allows a hypervisor to achieve a
much higher level of memory over-commitment when sup-
porting multiple Linux instances (or any other operating
systems). The garbage collection technique does not mark
all of the objects in the Java heap during collection. It uses
a technique of marking subsets of objects. As an example,
the Java memory heap is divided into subsections. These
subsections are used during the marking phase of garbage
collection such that these subsections of the heap are to be
marked without referencing other areas of the heap, as
described herein.

In accordance with one or more further aspects, a memory
heap is divided into a large number of heap sections (HS),
e.g., 32, for this example. Memory allocation for new
objects begins, for instance, at the first heap section (Active
HS=0). A local root list is provided for each heap section. In
one embodiment, when the active heap section becomes
nearly full (or in another embodiment when certain page
groups of a page section become full), garbage collection is
run. The local root list for Heap Section 0 is used to help
mark all of the active objects in HS 0. After several rounds
of garbage collection for HS 0 there will eventually be a
point when the number of active objects exceeds the space
allocated in Heap Section 0. Then, the active heap section is
dynamically changed to the next section (Active HS=1).

10

15

20

25

30

35

40

45

50

55

60

65

12

When a new object is added to HS 1, it is determined if
the parent object is also in HS 1. If the parent is not in HS
1, the address of the new object is added to the local root list
for HS 1. New objects are added to HS 1 and when HS 1
becomes nearly full, garbage collection is run on HS 1. The
garbage collection mark phase provided by one or more
aspects uses each entry of the local root list for HS 1 to trace
the linked list of objects that are in the active HS, in this case
HS=1. The mark phase does not reference objects in other
heap sections. It is possible that the marking of objects in HS
1 will indicate that an object is still alive when it has actually
been cut off from the real roots somewhere in an object in
HS 0. This inefficiency is accepted, and the effect of this
inefficiency is minimized by periodically performing a full
garbage collection that uses the traditional technique of
marking all live objects accurately in all sections of the heap
at once.

The use of the other Heap Sections 3 to 31 continues in
the same manner. When section 31 becomes full, the system
wraps back to use Heap Section 0. By the time the wrap
around occurs, there will be many objects in HS 0 that are
not alive and have been cleared away by the periodic full
garbage collection.

In one or more other embodiments, objects can be moved
between heap sections based on the average reference rate
for that heap section compared to the reference rate of the
object. Over time, the least referenced objects end up
together in, e.g., the first heap section, and the most often
referenced objects end up in, e.g., the last heap section.
Objects that are suddenly referenced more than their peers in
their heap section are moved to, e.g., a higher heap section
(possibly jumping across several sections).

One or more further aspects of the invention may also
provide a technique to sort and compact the live objects
within a single heap section so that more frequently accessed
objects are kept together on a small number of memory
pages, further reducing the memory working set of the Java
system. Compaction is used which groups recently refer-
enced objects together. Compaction is used only periodi-
cally, and the system rarely performs a full traditional
garbage collection where all live objects are marked, a full
sweep is done, and the remaining objects are compacted
within their subsections of the heap.

When a program method for any object is run, a mark in
the object’s memory is made that indicates that it has been
“touched” recently. These marks can be reset during the
periodic full garbage collection done for the entire heap. The
absence of these marks is used to indicate that an object is
live but not frequently referenced. A compaction phase of
the periodic full garbage collection is changed to group
objects that are not frequently referenced together in specific
memory pages within their heap section.

Rarely referenced objects are identified and packed close
together. This allows whole virtual memory pages to become
rarely referenced, and then, the normal virtual page man-
agement scheme will page those rarely listed pages out to
disk for long periods of time. This reduces the virtual
memory footprint of any Java program that runs in a system
using one or more aspects of the invention.

As will be appreciated by one of average skill in the art,
aspects of embodiments may be embodied as a system,
method or computer program product. Accordingly, aspects
of embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as, for example, a “circuit,”

US 9,430,153 B2

13

“module” or “system.” Furthermore, aspects of embodi-
ments may take the form of a computer program product
embodied in one or more computer readable storage
device(s) having computer readable program code embodied
thereon.

One or more of the capabilities of embodiments can be
implemented in software, firmware, hardware, or some
combination thereof. Further, one or more of the capabilities
can be emulated.

Referring to FIG. 11, in one example, a computer program
product 1100 includes, for instance, one or more non-
transitory computer readable storage media 1102 to store
computer readable program code means, logic and/or
instructions 1104 thereon to provide and facilitate one or
more embodiments.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object

10

15

20

25

30

35

40

45

50

55

60

65

14

oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the

US 9,430,153 B2

15

blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

In addition to the above, one or more aspects may be
provided, offered, deployed, managed, serviced, etc. by a
service provider who offers management of customer envi-
ronments. For instance, the service provider can create,
maintain, support, etc. computer code and/or a computer
infrastructure that performs one or more aspects for one or
more customers. In return, the service provider may receive
payment from the customer under a subscription and/or fee
agreement, as examples. Additionally or alternatively, the
service provider may receive payment from the sale of
advertising content to one or more third parties.

In one aspect, an application may be deployed for per-
forming one or more embodiments. As one example, the
deploying of an application comprises providing computer
infrastructure operable to perform one or more embodi-
ments.

As a further aspect, a computing infrastructure may be
deployed comprising integrating computer readable code
into a computing system, in which the code in combination
with the computing system is capable of performing one or
more embodiments.

As yet a further aspect, a process for integrating comput-
ing infrastructure comprising integrating computer readable
code into a computer system may be provided. The com-
puter system comprises a computer readable medium, in
which the computer medium comprises one or more
embodiments. The code in combination with the computer
system is capable of performing one or more embodiments.

Although various embodiments are described above,
these are only examples. For example, computing environ-
ments of other architectures can be used to incorporate and
use one or more embodiments. Further, different thresholds,
markers and/or indicators may be used. Many variations are
possible.

Further, other types of computing environments can ben-
efit and be used. As an example, a data processing system
suitable for storing and/or executing program code is usable
that includes at least two processors coupled directly or
indirectly to memory elements through a system bus. The
memory elements include, for instance, local memory
employed during actual execution of the program code, bulk
storage, and cache memory which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/Output or /O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/0O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems, and Ethernet cards are
just a few of the available types of network adapters.

In a further embodiment, one or more aspects relate to
cloud computing. It is understood in advance that although
this disclosure includes a detailed description on cloud
computing, implementation of the teachings recited herein

25

40

45

55

16

are not limited to a cloud computing environment. Rather,
embodiments of the present invention are capable of being
implemented in conjunction with any other type of comput-
ing environment now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based email). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,

US 9,430,153 B2

17

which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for loadbalancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 12, a schematic of an example of
a cloud computing node is shown. Cloud computing node
6010 is only one example of a suitable cloud computing
node and is not intended to suggest any limitation as to the
scope of use or functionality of embodiments of the inven-
tion described herein. Regardless, cloud computing node
6010 is capable of being implemented and/or performing
any of the functionality set forth hereinabove.

In cloud computing node 6010 there is a computer sys-
tem/server 6012, which is operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server 6012
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, handheld
or laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing envi-
ronments that include any of the above systems or devices,
and the like.

Computer system/server 6012 may be described in the
general context of computer system executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 6012 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 12, computer systeny/server 6012 in
cloud computing node 6010 is shown in the form of a
general-purpose computing device. The components of

15

25

30

40

45

18

computer systen/server 6012 may include, but are not
limited to, one or more processors or processing units 6016,
a system memory 6028, and a bus 6018 that couples various
system components including system memory 6028 to pro-
cessor 6016.

Bus 6018 represents one or more of any of several types
of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus
architectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

Computer system/server 6012 typically includes a variety
of computer system readable media. Such media may be any
available media that is accessible by computer system/server
6012, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 6028 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 6030 and/or cache memory 6032.
Computer system/server 6012 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 6034 can be provided for reading from and writing
to a non-removable, non-volatile magnetic media (not
shown and typically called a “hard drive”). Although not
shown, a magnetic disk drive for reading from and writing
to a removable, non-volatile magnetic disk (e.g., a “floppy
disk™), and an optical disk drive for reading from or writing
to a removable, non-volatile optical disk such as a CD-
ROM, DVD-ROM or other optical media can be provided.
In such instances, each can be connected to bus 6018 by one
or more data media interfaces. As will be further depicted
and described below, memory 6028 may include at least one
program product having a set (e.g., at least one) of program
modules that are configured to carry out the functions of
embodiments of the invention.

Program/utility 6040, having a set (at least one) of pro-
gram modules 6042, may be stored in memory 6028 by way
of example, and not limitation, as well as an operating
system, one or more application programs, other program
modules, and program data. Each of the operating system,
one or more application programs, other program modules,
and program data or some combination thereof, may include
an implementation of a networking environment. Program
modules 6042 generally carry out the functions and/or
methodologies of embodiments of the invention as described
herein.

Computer system/server 6012 may also communicate
with one or more external devices 6014 such as a keyboard,
a pointing device, a display 6024, etc.; one or more devices
that enable a user to interact with computer system/server
6012; and/or any devices (e.g., network card, modem, etc.)
that enable computer system/server 6012 to communicate
with one or more other computing devices. Such commu-
nication can occur via Input/Output (I/O) interfaces 6022.
Still yet, computer system/server 6012 can communicate
with one or more networks such as a local area network
(LAN), a general wide area network (WAN), and/or a public
network (e.g., the Internet) via network adapter 6020. As
depicted, network adapter 6020 communicates with the
other components of computer system/server 6012 via bus
6018. It should be understood that although not shown, other
hardware and/or software components could be used in

US 9,430,153 B2

19

conjunction with computer system/server 6012. Examples,
include, but are not limited to: microcode, device drivers,
redundant processing units, external disk drive arrays, RAID
systems, tape drives, and data archival storage systems, etc.

Referring now to FIG. 13, illustrative cloud computing
environment 6050 is depicted. As shown, cloud computing
environment 6050 comprises one or more cloud computing
nodes 6010 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 6054A, desktop com-
puter 60548, laptop computer 6054C, and/or automobile
computer system 6054N may communicate. Nodes 6010
may communicate with one another. They may be grouped
(not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 6050 to offer infra-
structure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a
local computing device. It is understood that the types of
computing devices 6054A-N shown in FIG. 13 are intended
to be illustrative only and that computing nodes 6010 and
cloud computing environment 6050 can communicate with
any type of computerized device over any type of network
and/or network addressable connection (e.g., using a web
browser).

Referring now to FIG. 14, a set of functional abstraction
layers provided by cloud computing environment 6050
(FIG. 13) is shown. It should be understood in advance that
the components, layers, and functions shown in FIG. 14 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 6060 includes hardware and
software components. Examples of hardware components
include mainframes, in one example IBM® zSeries® sys-
tems; RISC (Reduced Instruction Set Computer) architec-
ture based servers, in one example IBM pSeries® systems;
IBM xSeries® systems; IBM BladeCenter® systems; stor-
age devices; networks and networking components.
Examples of software components include network appli-
cation server software, in one example IBM WebSphere®
application server software; and database software, in one
example IBM DB2® database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide).

Virtualization layer 6062 provides an abstraction layer
from which the following examples of virtual entities may
be provided: virtual servers; virtual storage; virtual net-
works, including virtual private networks; virtual applica-
tions and operating systems; and virtual clients.

In one example, management layer 6064 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com-
prise application software licenses. Security provides iden-
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro-
vides cloud computing resource allocation and management
such that required service levels are met. Service Level

25

30

40

45

50

55

60

20

Agreement (SLA) planning and fulfillment provide pre-
arrangement for, and procurement of, cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 6066 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: mapping and navigation;
software development and lifecycle management; virtual
classroom education delivery; data analytics processing; and
transaction processing.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting. As used herein, the singular forms “a”, “an” and
“the” are intended to include the plural forms as well, unless
the context clearly indicates otherwise. It will be further
understood that the terms “comprises” and/or “comprising”,
when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below, if any, are intended to include any structure,
material, or act for performing the function in combination
with other claimed elements as specifically claimed. The
description of one or more embodiments has been presented
for purposes of illustration and description, but is not
intended to be exhaustive or limited to in the form disclosed.
Many modifications and variations will be apparent to those
of ordinary skill in the art. The embodiment was chosen and
described in order to best explain various aspects and the
practical application, and to enable others of ordinary skill
in the art to understand various embodiments with various
modifications as are suited to the particular use contem-
plated.

What is claimed is:
1. A computer system for facilitating management of
memory heaps, said computer system comprising:
a memory; and
a processor in communications with the memory, wherein
the computer system is configured to perform a
method, said method comprising:
selecting a heap section of a memory heap to be
examined for garbage collection, the heap section
comprising a plurality of groups, the plurality of
groups defined such that groups include objects of
particular types, a particular type being defined
based on frequency of reference of the objects within
a group;
selecting one or more groups of the plurality of groups
of the heap section to be examined for garbage
collection, the selecting being based on the particular
type of the one or more groups;
determining whether garbage collection is to be per-
formed for the selected one or more groups; and
performing garbage collection on the selected one or more
groups based on the determining indicating garbage
collection is to be performed for the selected one or
more groups, wherein the performing garbage collec-
tion comprises:
selecting an object of a group of the one or more groups
selected for garbage collection;
determining whether the object is marked as reachable;

US 9,430,153 B2

21

returning memory of the object to a free list of memory,
based on the determining indicating the object is not
reachable;

checking whether a reference indicator of the object is
set, based on the determining indicating the object is
marked as reachable; and

moving the object from the group to another group of
a particular type that differs from the particular type
of the group, based on the checking indicating the
reference indicator is not set.

2. The computer system of claim 1, wherein the method
further comprises:

allocating objects in the memory heap, wherein the allo-

cating comprises:
selecting one heap section of a plurality of heap sec-
tions of the memory heap to be a selected heap
section to receive an object to be placed in the
memory heap, wherein the selecting comprises:
determining whether one or more groups of a
selected particular type in a chosen heap section
have space for the object;
selecting the chosen heap section as the selected
heap section, based on the one or more groups of
the selected particular type in the chosen heap
section having space for the object; and
selecting another heap section as the selected heap
section based on determining the one or more
groups of the selected particular type in the chosen
heap section lack space for the object; and
selecting one group of the one or more groups of the
selected heap section in which to include the object.

3. The computer system of claim 1, further comprising:

determining whether a selected heap section of a plurality

ot heap sections of the memory heap is to be examined
for movement of one or more objects from one group
of the selected heap section to another group of the
selected heap section;

checking one or more objects of the one group, based on

the determining indicating the selected heap section is
to be examined to determine whether the one or more
objects are to be moved; and

moving at least one object of the one or more objects to

the another group based on the checking indicating the
one or more objects are to be moved.

4. The computer system of claim 1, further comprising
swapping one object of a first group of a selected heap
section of a plurality of heap sections of the memory heap
with another object of a second group of the selected heap
section.

5. The computer system of claim 4, wherein the swapping
comprises:

determining a median reference count for objects of the

selected heap section;

comparing a reference count of the one object with the

median reference count; and

swapping the one object with the another object in the

second group based on the comparing, wherein the
second group is, based on the comparison indicating
the reference count is below the median reference
count, of a type characterized as having more fre-
quently referenced objects as compared to the objects
of'the first group, and the second group is, based on the
comparison indicating the reference count is above the
median reference count, of a type characterized as
having less frequently referenced objects as compared
to the objects of the first group.

10

15

20

25

30

35

40

45

50

55

60

65

22

6. The computer system of claim 3, wherein the another
group is defined as including objects that are referenced less
frequently than the objects of the one group.
7. The computer system of claim 1, wherein the particular
type of the one or more groups selected to be examined is a
type of frequently referenced objects, the frequently refer-
enced being determined with reference to a defined value of
referencing.
8. The computer system of claim 1, wherein the selecting
the one or more groups for garbage collection comprises
selecting less than all groups of the plurality of groups for
garbage collection.
9. The computer system of claim 1, wherein the perform-
ing garbage collection comprises performing garbage col-
lection on an object of the heap section independent of status
of the object in another heap section.
10. A computer program product for facilitating manage-
ment of memory heaps, said computer program product
comprising:
a computer readable storage medium readable by a pro-
cessing circuit and storing instructions for execution by
the processing circuit for performing a method com-
prising:
selecting a heap section of a memory heap to be
examined for garbage collection, the heap section
comprising a plurality of groups, the plurality of
groups defined such that groups include objects of
particular types, a particular type being defined
based on frequency of reference of the objects within
a group;

selecting one or more groups of the plurality of groups
of the heap section to be examined for garbage
collection, the selecting based on the particular type
of the one or more groups;

determining whether garbage collection is to be per-
formed for the selected one or more groups; and

performing garbage collection on the selected one or more

groups based on the determining indicating garbage

collection is to be performed for the selected one or

more groups, wherein the performing garbage collec-

tion comprises:

selecting an object of a group of the one or more groups
selected for garbage collection;

determining whether the object is marked as reachable;

returning memory of the object to a free list of memory,
based on the determining indicating the object is not
reachable;

checking whether a reference indicator of the object is
set, based on the determining indicating the object is
marked as reachable; and

moving the object from the group to another group of
a particular type that differs from the particular type
of the group, based on the checking indicating the
reference indicator is not set.

11. The computer program product of claim 10, wherein
the particular type of the one or more groups selected to be
examined is a type of frequently referenced objects, the
frequently referenced being determined with reference to a
defined value of referencing.

12. The computer program product of claim 10, wherein
the selecting the one or more groups for garbage collection
comprises selecting less than all groups of the plurality of
groups for garbage collection.

13. The computer program product of claim 10, wherein
the method further comprises:

allocating objects in the memory heap, wherein the allo-
cating comprises:

US 9,430,153 B2

23

selecting one heap section of a plurality of heap sec-
tions of the memory heap to be a selected heap
section to receive an object to be placed in the
memory heap, wherein the selecting comprises:
determining whether one or more groups of a
selected particular type in a chosen heap section
have space for the object;
selecting the chosen heap section as the selected
heap section, based on the one or more groups of
the selected particular type in the chosen heap
section having space for the object; and
selecting another heap section as the selected heap
section based on determining the one or more
groups of the selected particular type in the chosen
heap section lack space for the object; and
selecting one group of the one or more groups of the
selected heap section in which to include the object.
14. The computer program product of claim 10, wherein
the method further comprises:
determining whether a selected heap section of a plurality
ot heap sections of the memory heap is to be examined
for movement of one or more objects from one group
of the selected heap section to another group of the
selected heap section;
checking one or more objects of the one group, based on
the determining indicating the selected heap section is
to be examined, to determine whether the one or more
objects are to be moved; and
moving at least one object of the one or more objects to
the another group based on the checking indicating the
one or more objects are to be moved.

10

20

25

24

15. The computer program product of claim 14, wherein
the another group is defined as including objects that are
referenced less frequently than the objects of the one group.

16. The computer program product of claim 10, wherein
the method further comprises swapping one object of a first
group of a selected heap section of a plurality of heap
sections of the memory heap with another object of a second
group of the selected heap section.

17. The computer program product of claim 16, wherein
the swapping comprises:

determining a median reference count for objects of the

selected heap section;

comparing a reference count of the one object with the

median reference count; and

swapping the one object with the another object in the

second group based on the comparing, wherein the
second group is, based on the comparison indicating
the reference count is below the median reference
count, of a type characterized as having more fre-
quently referenced objects as compared to the objects
of the first group, and the second group is, based on the
comparison indicating the reference count is above the
median reference count, of a type characterized as
having less frequently referenced objects as compared
to the objects of the first group.

18. The computer program product of claim 10, wherein
the performing garbage collection comprises performing
garbage collection on an object of the heap section inde-
pendent of status of the object in another heap section.

#* #* #* #* #*

